

1101 9th Ave Oakland, CA 946060 510.451.9011

Technical Data Sheet

HEXAGONAL BORON NITRIDE POWDER (HBN)

Hexagonal Boron Nitride Powder is known for its lubricious properties and is an extremely popular dry lubricant. The material has excellent thermal stability and chemical inertness and is therefore often used as a mold release agent for molten metals and salts. The Hexagonal structure of the Boron Nitride improves the strength and hold ability of powder composites.

TYPICAL ANALYSIS		
Particle Size D50: -10um		
Chemistry	SPEC	TYP
BN	99.0 Min	99.1
B ₂ O ₃	-	.18
Free B	-	.16
NaO ₃	< 0.1	.07
Fe ₂ O ₃	< 0.07	.05
CaO	< 0.07	.055
MgO	< 0.01	.006
Al ₂ O ₃	< 0.05	.01
TiO ₂	< 0.005	.001

TYPICAL APPLICATIONS	
Lubricant	Thermally Conductive Filler
Cosmetics	Refractory
Mold Release	High Temperature Insulator
High Temperature Equipment	

I TPICAL PROPERTIES	
Lubricious	
Thermal Stability	
Chemical Inertness	
High Hardness	
High Temperature Insulator	

The information contained in this document is believed to be accurate and reliable but is presented without guarantee or warranty on the part of TKB Trading, LLC. Nothing present herein should be interpreted as an authorization or inducement to practice any patented invention without an appropriate license.

1101 9th Ave Oakland, CA 946060 510.451.9011

Technical Data Sheet

PROPERTIES	UNITS	TEST	VALUE
Physical			
Chemical Formula	-	-	ZBN
Density, ρ	g/cm ³	ASTM C20	2.28
Color	-	-	white
Crystal Structure	-	-	hexagonal
Water Absorption	% @R.T.	ASTM C373	0.0-1.0
Hardness	Mohs	-	2
Hardness	knoop (kg/mm ²)	Knoop 100g	25-205
Mechanical			
Compressive Strength	MPa @ R.T.	ASTM C773	23.5
Tensile Strength	MPa @ R.T.	ACMA Test #4	2.41(1000°C
Modulus of Elasticity (Young's Modulus)	GPa	ASTM C848	675
Flexural Strength (MOR)	MPa @ R.T.	ASTM F417	51.8
Poisson's Ratio, ບ		ASTM C818	0.05
Fracture Toughness, K _{IC}	MPa x m ^{1/2}	Notched Beam Test	2.6
Thermal			
Max. Use Temperature (* denotes inert atm.)	°C	No load cond.	985
Thermal Shock Resistance	ΔT (°C)	Quenching	>1500
Thermal Conductivity	W/m-K @ R.T.	ASTM C408	20
Coefficient of Linear Thermal Expansion, α_{I}	μm/m-°C (~25°C through ±1000°C)	ASTM C372	1.0-2.0
Specific Heat, c _p	cal/g-°C @ R.T.	ASTM C351	0.19
Electrical			
Dielectric Constant	1MHz @ R.T.	ASTM D150	4.0
Dielectric Strength	kV/mm	ASTM D116	374
Electrical Resistivity	Ωcm @ R.T.	ASTM D1829	10 ¹³

The information contained in this document is believed to be accurate and reliable but is presented without guarantee or warranty on the part of TKB Trading, LLC. Nothing present herein should be interpreted as an authorization or inducement to practice any patented invention without an appropriate license.

